
vecto Documentation

vecto authors

Jan 21, 2019

Contents

1 Tutorial 3

2 API reference 23

3 Contribution Guide 25

4 Indices and tables 27

Python Module Index 29

i

ii

vecto Documentation

Vecto is an open-source Python library for working with vector space models (VSMs), including various word embed-
dings such as word2vec. Vecto can load various popular formats of VSMs and perform a set of basic operations like
dimensionality reduction, seach for nearest neighbors etc. It includes a growing list of benchmarks with which VSMs
are evaluated in most current research, and a few visualization tools. It also includes a growing list of modules for
creating VSMs, both explicit and based on neural networks.

Contents 1

vecto Documentation

2 Contents

CHAPTER 1

Tutorial

1.1 Introduction to Vecto

This is the tutorial for Vecto. It describes:

• What it is, and why we are developing it.

• what you can do with Vecto.

• the roadmap of the project.

Both the library and the documentation are actively developed, check back for more! If you have questions, or would
like to contribute, feel free to get in touch on github.

1.1.1 What is Vecto?

Vecto is an open-source Python library for working with vector space models (VSMs), including various word embed-
dings such as word2vec. Vecto can load various popular formats of VSMs and retrieve nearest neighbors of a given
vector. It includes a growing list of benchmarks with which VSMs are evaluated in most current research, and a few
visualization tools. It also includes a growing list of modules for creating VSMs, both explicit and based on neural
networks.

1.1.2 Why do you bother?

There are a few other libraries for working with VSMs, including gensim and spacy. Vecto differs from them in that its
primary goal is to facilitate pricipled, systematic research in providing a framework for reproducible experiments
on VSMs.

From the academic perspective, this matters because this is the only way to understand more about what VSMs are
and what kind of meaning representation they offer.

From the practical perspective, this matters because otherwise we can not tell which VSM would be the best to use for
what task. Existing extrinsic evaluations of VSMs such as popular word similarity, relatedness, analogy and intrusion

3

https://github.com/undertherain/Vecto

vecto Documentation

tasks have methodological problems and do not correlate well with performance on all extrinsic tasks. Therefore
basically to pick the best representation for a task you have to try different kinds of VSMs until you find the best-
performing one.

Furthermore, there is the important and unpleasant part of parameter tuning and optimizing for a particular task. Levy
et al. (2015) showed that the choice of hyperparameters may make more of a difference than the choice of model itself.
Even more frustratingly, when you have a relatively comprehensive task covering a wide range of linguistic relations,
you may find that the parameters beneficial to a part of the task are detrimental for another part (Gladkova et al. 2016).

The neural parts of Vecto is implemented in Chainer, a new deep learning framework that is friendly to high-
performace multi-GPU environments. This should make Vecto useful in both academic and industrial settings.

1.2 Installing Vecto

1.2.1 System requirements

• Python 3.5 or later

1.2.2 Method 1: Pip-install

The latest stable version:

>>> pip3 install vecto

The latest development version:

>>> pip3 install git+https://github.com/vecto-ai/vecto.git

1.2.3 Method 2: Clone or download the github repo

You can avoid intalling vecto system-wide. Simply download and unpack the github repo into your project’s working
directory.

Either way, you can access the vecto’s modules by issuing

>>> import vecto

at the beginning of your code.

1.3 The metadata

Vecto attempts to record and track as much information as possible about each embedding and each experiment you
run. All the information about VSMs is stored in a metadata.json file in the same folder as the VSM itself.

Vecto can be used to work with VSMs that were trained elsewhere and may not come with any metadata. However,
even in this case, we encourage the users to try and find out and record as much of the metadata as possible,as soon
as possible. We have all been in the situation where, long after you have published a paper and forgotten all about
that project, you need to reuse some code or repeat an experiment - and that it’s nigh impossible, because the code is
unreadabe, filenames are criptic, and filepaths are long gone.

4 Chapter 1. Tutorial

http://www.aclweb.org/anthology/Q15-1016
http://www.aclweb.org/anthology/Q15-1016
http://www.aclweb.org/anthology/N16-2002
https://www.chainer.org

vecto Documentation

Moreover, keeping track of the metadata is also something that would force the researchers to be more aware of all
these different hidden variables in their experiments. That would (1) prevent them from misinterpreting the properties
of their models, and (2) provide some ideas about what could be tweaked.

1.3.1 The corpus metadata

It all starts with the corpus. Actually, as many corpora as you like, since it is common practice to combine corpora
to train a model (to increase the volume of data, to diversify it, or in fancy curriculum learning). Here is a sample
metadata file you can use as a template to describe your corpus.

Vecto records the following metadata:

todo a page about domains

id An identifier of the corpus, unique in the collection.

size The size of the corpus (in tokens).

name The (preferably short) name of the corpus, often used to identify the models built from it.

description The freeform description of the corpus, such as the domains it covers.

source Where the corpus was obtained.

domain The list of the domains of the texts, such as news, encyclopedia, fiction, medical, spoken, or web. If the
corpus covers only one domain, the list only contains one item; otherwise several can be listed. We suggest
using general only for balanced, representative corpora such as BNC that make a conscious effort to represent
different registers.

language A list containing the language codes for the corpus. There will be just one entry in case of monolingual
corpora (e.g. [“en”]), and for parallel or multilingual corpora there will be several ([“en”, “de”]).

encoding The encoding of the corpus files.

format The format of the corpus. Some frequent options include: one-corpus-per-line, one-sentence-per-line, one-
paragraph-per-line, one-word-per-line, vertical-format

date The date when the corpus (or its text source) was published. It can be the date of a Wikipedia dump (e.g.
2018-07), or the year when the paper presenting the resource came out (e.g. 2017).

path The path to the local copy of the corpus files.

cite The bibtex entry for the paper presenting the resource, that should be referenced in subsequent work building on
or using the resource. It should be bibtex rather than biblatex, as most NLP publishers have not made the switch
yet.

pre-processing The pre-processing steps used in preparing this resource, described in freeform text.

cleanup Markup removal, format conversion, encoding, de-duplication (freeform description, URL or path to the
pre-processing script)

lowercasing True if the corpus was lowercased, False otherwise.

tokenization The tokenizer that was used, if any (URL or path to the script, name, version).

lemmatization The lemmatizer that was used, if any (URL or path to the script, name, version).

stemming The stemmer that was used, if any (URL or path to the script, name, version).

POS_tagging The POS-tagger that was used, if any (URL or path to the script, name, version).

syntactic_parsing The syntactic parser that was used, if any (URL or path to the script, name, version).

Semantic_parsing The semantic parser that was used, if any (URL or path to the script, name, version).

1.3. The metadata 5

http://www.natcorp.ox.ac.uk/corpus/creating.xml

vecto Documentation

Other_preprocessing Any other pre-processing that was performed, if any (URL or path to the script, name, version).

todo the format section should link to the input of embedding models

{
"class": "corpus",
"corpus_01": {

"id": "",
"size": ,
"name": "",
"description": "",
"source": "",
"domain": "",
"language": ["english"],
"encoding": "",
"format": "",
"date": "",
"path": "",

"pre-processing": {
"cleanup": "",
"lowercasing": ,
"tokenization": "",
"lemmatization": "",
"stemming": "",
"POS_tagging": "",
"syntactic_parsing": "",
"semantic_parsing": "",
"other_preprocessing": "",
}

}
"corpus_02": {

"id": "",
"size": ,
"name": "",
"description": "",
"source": "",
"domain": "",
"language": ["english"],
"encoding": "",
"format": "",
"date": "",
"path": "",

"pre-processing": {
"cleanup": "",
"lowercasing": ,
"tokenization": "",
"lemmatization": "",
"stemming": "",
"POS_tagging": "",
"syntactic_parsing": "",
"semantic_parsing": "",
"other_preprocessing": ""
}

}
}

6 Chapter 1. Tutorial

vecto Documentation

1.3.2 The vocab metadata

There are two types of vocab files in Vecto. One is basically lists of the vocabulary of word embeddings. Sometimes
they are stored separately from the numerical data as plain-text, one-word-per-line files (e.g. when the numerical data
itself is stored in .npy format). Vecto expects such files to have a “.vocab” extension.

The other type of vocab is a tab-separated file structured as [WORD FREQUENCY].

The vocab files can have associated metadata as follows.

size The number of token types.

min_frequency The minimum frequency cut-off point.

timestamp When the vocab file was produced

filtering A freeform description of any filtering applied to the vocabulary, if any.

lib_version The version of Vecto with which a given vocab file was produced (generated automatically by Vecto).

system_info The system in which the vocab file was produced (generated automatically by Vecto).

source Includes the metadata of the source corpus from which the vocab file was produced, as described in The corpus
metadata section.

todo link to the vocab filtering section, if any

todo filtered_by - text file, wordlist, dict with metadata

{
"class": "vocabulary",
"size": ,
"min_frequency": ,
"lowercasing": "",
"execution_time": "",
"timestamp": "",
"lib_version": "",
"system_info": "",
"filtered_by": {

},
"source": {

}
}

1.3.3 The embeddings metadata

The metadata collected in training of embeddings is hard to standartize, because essentially it needs to describe all the
parameters of a given model, and they differ across models. Therefore this section only provides a sample, and the
full list of parameters (which correspond to metadata) can be found in descriptions of the implementations of different
models in the library.

todo link to the library of embeddings

Some of the frequent parameters applicable to most-if-not-all models include:

model The name of the model, such as CBOW or GloVe.

window The window size

dimensionality The number of vector dimensions.

1.3. The metadata 7

vecto Documentation

context The type of context, as described by Li et al. Four common combinations are linear_unbound (the bag-of-
words symmetrical context, the most commonly used), linear_bound (linear context that takes word order into
account), deps_unbound (the dependency-based context which takes into account all words in a syntactic rela-
tion to the target word), and deps_boun (a version of the latter which differentiates between different syntactic
relations). See the paper for mor details.

epochs The number of epochs for which the model was trained.

cite The bibtex entry for the paper presenting the resource, that should be referenced in subsequent work building on
or using the resource. It should be bibtex rather than biblatex, as most NLP publishers have not made the switch
yet.

vocabulary The vocabulary metadata as described in The vocab metadata, which also includes the corpus metadata.

{
"class": "embeddings",

"model": "",
"window": ,
"dimensionality": ,
"context": "",
"epochs": ,
"cite": "",
"vocabulary": {

}
"lib_version": "",
"system_info": "",

}

1.3.4 The datasets metadata

The task datasets should be accompanied by the following metadata:

task The task for which the dataset is applicable, such as word_analogy or word_relatedness.

language A list containing the language codes for the corpus. There will be just one entry in case of monolingual
corpora (e.g. _[“en”]_), and for parallel or multilingual corpora there will be several (_[“en”, “de”]_).

name The (preferably short) name of the dataset, such as WordSim353.

description The freeform brief description of the dataset, preferably including anything special about this dataset that
distinguishes it from other datasets for the same task.

domain The domain of the dataset, such as news, encyclopedia, fiction, medical, spoken, or web. We suggest using
general only for datasets that do not target any particular domain.

date The date the resource was published.

source The source of the resource (e.g. a modification of another dataset, or something created by the authors from
scratch or on the basis of some data that was not previously used for the same task).

project_page The URL of the page describing the dataset (if any)

version The version of the dataset (useful when you are developing one).

size The size of the dataset. The units depend on the task: it can be e.g. 353 pairs for a similarity or analogy dataset.

cite The bibtex entry for the paper presenting the resource, that should be referenced in subsequent work building on
or using the resource. It should be bibtex rather than biblatex, as most NLP publishers have not made the switch
yet.

8 Chapter 1. Tutorial

http://www.aclweb.org/anthology/D17-1257

vecto Documentation

{
"class": "dataset",

"task": "",
"language": ["english"],
"name": "",
"description": "",
"domain": "",
"date": "",
"source": "",
"project_page": "",
"version": "",
"size": "",
"cite": ""

}

1.3.5 The experiment metadata

As with the training of embeddings, different experiments involve different sets of metadata. The parameters of each
model included in the Vecto library is described in the corresponding library page. In addition to that, the metadata
for each experiment will automatically include the metadata for the dataset and embeddings (which also includes the
corpus metadata).

Some of the generic metadata fields that are applicable to all experiments include:

name The (hopefully descriptive) name of the model, such as LogisticRegression.

task The type of the task that this model is applicable to (e.g. word_analogy or text_classification).

description A brief description of the implementation, preferably including its use case (e.g. a sample implementation
in a some framework, a standard baseline for some task, a state-of-the-art model.)

author The author of the code (for unpublished models).

version The version of the implementation, if any.

date The date when the code was published or contributed.

source If the code is reimplementation of something else, this is the field to indicate it.

cite The bibtex entry for the paper presenting the code, that should be referenced in subsequent work building on or
comparing with this implementation. It should be bibtex rather than biblatex, as most NLP publishers have not
made the switch yet.

{
"class": "experiment",

"name": "",
"task": "",
"description": "",
"author": "",
"version": "",
"date": "",
"source": "",
"cite": ""

}

1.3. The metadata 9

vecto Documentation

1.3.6 Accessing the metadata in Vecto

All metadata is accessible from vsmlib while you are experimenting on dozens of VSMs you have built, facilitating
both parameter search for a particular task and observations on what properties of VSMs result in what aspects of their
performance.

You can access the VSM metadata as follows:

The name of the model, which is the name directory in which it is stored. For models generated with VSMlib,
interpretable folder names with parameters are generated automatically.

>>> print(my_vsm.name)
w2v_comb2_w8_n25_i6_d300_skip_300

You can also access the metadata as a Python dictionary:

>>> print(my_vsm.metadata)
{'size_dimensions': 300, 'dimensions': 300, 'size_window': '8'}

1.4 Where to get data?

This page lists some source corpora and pre-trained word vectors you can download.

1.4.1 Source corpora

English Wikipedia, August 2013 dump, pre-processed

• One-sentence per line, cleaned from punctuation

• One-word-per-line, parser tokenization (this is the version used in the non-dependency-parsed embeddings
downloadable below, so use this one if you would like to have directly comparable embeddings)

• Dependency-parsed version (CoreNLP Stanford parser)

1.4.2 Pre-trained VSMs

English

Wikipedia vectors (dump of August 2013)

Here you can download 500-dimensional pre-trained vectors for the popular CBOW, Skip-Gram and GloVe VSMs -
each in 4 kinds of context:

These embeddings were generated for the following paper. Please cite it if you use them in your research:

@inproceedings{LiLiuEtAl_2017_Investigating_Different_Syntactic_Context_Types_and_
→˓Context_Representations_for_Learning_Word_Embeddings,
title = {Investigating {{Different Syntactic Context Types}} and {{Context
→˓Representations}} for {{Learning Word Embeddings}}},
url = {http://www.aclweb.org/anthology/D17-1256},
booktitle = {Proceedings of the 2017 {{Conference}} on {{Empirical Methods}} in {
→˓{Natural Language Processing}}},
author = {Li, Bofang and Liu, Tao and Zhao, Zhe and Tang, Buzhou and Drozd,
→˓Aleksandr and Rogers, Anna and Du, Xiaoyong},
year = {2017},
pages = {2411--2421}}

10 Chapter 1. Tutorial

https://my.pcloud.com/publink/show?code=XZKxYV7ZIl9KNR5oLa5K2OMQlVuW1XJ1IV0V
https://my.pcloud.com/publink/show?code=XZYcQV7ZR67964yEkEJhgHaM273JjptIUEpX
https://my.pcloud.com/publink/show?code=XZ1nbV7ZTdOs3qzO6p7X3lzX7Ychmbqc2unX
https://arxiv.org/pdf/1301.3781.pdf
https://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D17-1256

vecto Documentation

You can also download the source corpus (one-word-per-line format) with which you can train other VSMs for fair
comparison.

Each of the 3 models (CBOW, GloVe and Skip-Gram) is available in 5 sizes (25, 50, 100, 250, and 500 dimensions)
and in 4 types of context: the traditional word linear context (which is used the most often), the dependency-based
structured context, and also less common structured linear and word dependency context.

Unbound linear context (aka word linear context)

500 dimensions: word_linear_cbow_500d, word_linear_sg_500d, word_linear_glove_500d

250 dimensions: word_linear_cbow_250d, word_linear_sg_250d, word_linear_glove_250d

100 dimensions: word_linear_cbow_100d, word_linear_sg_100d, word_linear_glove_100d

50 dimensions: word_linear_cbow_50d, word_linear_sg_50d, word_linear_glove_50d

25 dimensions: word_linear_cbow_25d, word_linear_sg_25d, word_linear_glove_25d

Unbound dependency context (aka word dependency context)

500 dimensions: word_deps_CBOW_500d, word_deps_sg_500d, word_deps_glove_500d

250 dimensions: word_deps_cbow_250d, word_deps_sg_250d, word_deps_glove_250d

100 dimensions: word_deps_cbow_100d, word_deps_sg_100d, word_deps_glove_100d

50 dimensions: word_deps_cbow_50d, word_deps_sg_50d, word_deps_glove_50d

25 dimensions: word_deps_cbow_25d, word_deps_sg_25d, word_deps_glove_25d

Bound linear context (aka structured linear context)

500 dimensions: structured_linear_cbow_500d, structured_linear_sg_500d, structured_linear_glove_500d

250 dimensions: structured_linear_cbow_250d, structured_linear_sg_250d, structured_linear_glove_250d

100 dimensions: structured_linear_cbow_100d, structured_linear_sg_100d, structured_linear_glove_100d

50 dimensions: structured_linear_cbow_50d, structured_linear_sg_50d, structured_linear_glove_50d

25 dimensions: structured_linear_cbow_25d, structured_linear_sg_25d, structured_linear_glove_25d

Bound dependency context (aka structured dependency context)

500 dimensions: structured_deps_cbow_500d, structured_deps_sg_500d, structured_deps_glove_500d

250 dimensions: structured_deps_cbow_250d, structured_deps_sg_250d, structured_deps_glove_250d

100 dimensions: structured_deps_cbow_100d, structured_deps_sg_100d, structured_deps_glove_100d

50 dimensions: structured_deps_cbow_50d, structured_deps_sg_50d, structured_deps_glove_50d

25 dimensions: structured_deps_cbow_25d, structured_deps_sg_25d, structured_deps_glove_25d

1.4. Where to get data? 11

https://my.pcloud.com/publink/show?code=XZYcQV7ZR67964yEkEJhgHaM273JjptIUEpX
http://www.aclweb.org/anthology/P14-2050
http://www.aclweb.org/anthology/P14-2050
https://my.pcloud.com/publink/show?code=XZ7oQV7ZtOKVArr2oo43sGneJ97PA0XAwus7
https://my.pcloud.com/publink/show?code=XZ5oQV7ZAQf36xu0bCkSOS6T44MoFYJfw00k
https://my.pcloud.com/publink/show?code=XZXoQV7ZpTzLwpqdLyzPfwnT7Fcv55E3Fe3V
https://my.pcloud.com/publink/show?code=XZulYV7ZisQrET4XHTHMcy8fz2kkg4Sf18Ry
https://my.pcloud.com/publink/show?code=XZKlYV7ZKMBIOldSJo8Fk40gqkttkX2zNzz7
https://my.pcloud.com/publink/show?code=XZglYV7Z9AyDD0Y03RQ41sFQc41g0SXCdIpy
https://my.pcloud.com/publink/show?code=XZhlYV7ZcDdiVOs5tTkroT5h7bmGFFz17X5k
https://my.pcloud.com/publink/show?code=XZwlYV7ZI8WPcaXm7OmUQ4QYhbFvk4BEYzaX
https://my.pcloud.com/publink/show?code=XZ9lYV7ZH1yzsyHlQSRWYEhfQgKfM872Em0X
https://my.pcloud.com/publink/show?code=XZmlYV7ZdvK04WSDjG4Kz51ohUQFPJLrPWV7
https://my.pcloud.com/publink/show?code=XZxlYV7Zo2C4QlI9xDfTTur15Qxgekkvp7lX
https://my.pcloud.com/publink/show?code=XZ1lYV7ZRM85JnliynpAbhkaQc6GVmOoBn6X
https://my.pcloud.com/publink/show?code=XZYlYV7ZwGMYTVssGmSNVNS93AMYRBafIQO7
https://my.pcloud.com/publink/show?code=XZPlYV7ZPqBg6CX2KXJa80Egqkqht47VCOKk
https://my.pcloud.com/publink/show?code=XZslYV7ZHmkNLyF6UL8xE2GEFLtQSuHqxcKk
https://my.pcloud.com/publink/show?code=XZacQV7ZUOWcmOufhL4iplh89volJJsgVhF7
https://my.pcloud.com/publink/show?code=XZccQV7ZnBNANKrYz9fKh0nnU8OSX7YVhkR7
https://my.pcloud.com/publink/show?code=XZicQV7ZhuzDUY6drr4ARqreHxkfXhkhkg27
https://my.pcloud.com/publink/show?code=XZvKYV7ZQuceFLhGUWQ6PyesIBIsEVSQXam7
https://my.pcloud.com/publink/show?code=XZLlYV7ZEQEdoHEie5BuqrdPY01VGmCUsobX
https://my.pcloud.com/publink/show?code=XZ5lYV7ZYBbEVfCxWM0Ai3Ti9IcIQpf6L8T7
https://my.pcloud.com/publink/show?code=XZ3KYV7ZEnbKOV4fIiLoem4j1zF9q7tjkBGX
https://my.pcloud.com/publink/show?code=XZHlYV7ZhTD8XY4gB27kOk65aLv9LbY7Bnjy
https://my.pcloud.com/publink/show?code=XZVlYV7ZN5Pm7ezpk3yCz20TUSuambysdP9k
https://my.pcloud.com/publink/show?code=XZOKYV7ZdFuIfLbjHkf7E8h3b3HPwzuGGM1X
https://my.pcloud.com/publink/show?code=XZplYV7ZVzca9TCA8WY3SL99PhtBK8n1JoSk
https://my.pcloud.com/publink/show?code=XZ7lYV7ZjKd9VrRm78QDp57So3zRfYfVaQcV
https://my.pcloud.com/publink/show?code=XZqKYV7ZS10yWbGyzR8zEQ3VGP9p54FDyohy
https://my.pcloud.com/publink/show?code=XZJlYV7Zs4JlIKbUtLQQFMiQmMOII7QXseD7
https://my.pcloud.com/publink/show?code=XZrKYV7ZOmhjV47u8lHyJzuhOiEDm8JBkyhk
https://my.pcloud.com/publink/show?code=XZKcQV7ZusfRm99TPSkdpqpjN4c9QkDQvYHX
https://my.pcloud.com/publink/show?code=XZEcQV7ZRXITvejfSV5MIHOkzEGkpm08BcNX
https://my.pcloud.com/publink/show?code=XZtcQV7ZEaxc9WkUEzFyWlABJfvvEhsVtuj7
https://my.pcloud.com/publink/show?code=XZHKYV7ZQbPqGclTkQXCnucpQYNaepFdwtUV
https://my.pcloud.com/publink/show?code=XZxKYV7ZqYBiWKbcBAYicNXRQKvu7LAiC1Qy
https://my.pcloud.com/publink/show?code=XZjKYV7ZpOGtYDuNU00knopKpXIny7qsTaly
https://my.pcloud.com/publink/show?code=XZFKYV7ZBNi8fkrGIXY0Yh7tOkTX7uuqMxgy
https://my.pcloud.com/publink/show?code=XZTKYV7ZBVGh0vLavyQYmbVROV2QK7ziPDCy
https://my.pcloud.com/publink/show?code=XZmKYV7Zgyyapidca28dhoHVKHu0y5LypQTk
https://my.pcloud.com/publink/show?code=XZXKYV7ZzjgJFvDJKOh4QzwOrf3kIhgY9Qik
https://my.pcloud.com/publink/show?code=XZsKYV7Zc6y8l11aXehBTJfaVwTmIu5Bbfvk
https://my.pcloud.com/publink/show?code=XZQKYV7ZP7ICg5OiehyxACPpAUF0lpQYyR5y
https://my.pcloud.com/publink/show?code=XZcwYV7ZNf6k7YwqV8FQ3jEl6Fdjz0Xl4myy
https://my.pcloud.com/publink/show?code=XZBKYV7ZnAm5dmhjkDQpQUeMYBCQGpYqveFy
https://my.pcloud.com/publink/show?code=XZ8KYV7Zsk1Vq1eyA8p4r330FPYokVxIyBtk
https://my.pcloud.com/publink/show?code=XZDcQV7ZQfLM3T3jydX9w2aJr7UldFEDWS4V
https://my.pcloud.com/publink/show?code=XZgcQV7ZfzzuQjOKCxkcOfrHj8Yemfv2WyXy
https://my.pcloud.com/publink/show?code=XZ9cQV7ZuRvd5fFmnxm11cug3ewruuPO5Aa7
https://my.pcloud.com/publink/show?code=XZBwYV7ZWf86nSHBrUjQBSCDBsk5XmyiE9O7
https://my.pcloud.com/publink/show?code=XZNwYV7ZD0qtDzbbfIFA0tUwafl1GXiWjpBV
https://my.pcloud.com/publink/show?code=XZgwYV7ZEBJXpPRygNYv3R7YAA7AeRaWHwm7
https://my.pcloud.com/publink/show?code=XZuwYV7Z3xL5gAVboKBmWQhlz6un9hVnCD1V
https://my.pcloud.com/publink/show?code=XZAwYV7ZrjuC5jhpos0ksm5OnR3ORj5E5zby
https://my.pcloud.com/publink/show?code=XZMwYV7Zjk9mzOu4rXBv0WM9HDCtWmGImjg7
https://my.pcloud.com/publink/show?code=XZmwYV7ZNjYCFb1k17Sxf2LFteFziXtcsdxk
https://my.pcloud.com/publink/show?code=XZOwYV7Zmoh4zfUWb7FTVGvBUpaV7juEQYA7
https://my.pcloud.com/publink/show?code=XZ1wYV7ZdvXjLnW8l0pgQacOjcd5wV5MU7o7
https://my.pcloud.com/publink/show?code=XZpwYV7Zwnf7KxYY3OJjD2ph6L92NH6Ada9X
https://my.pcloud.com/publink/show?code=XZxwYV7Z4LBXPMEybQ7LLwC6VqIUaQqsg17X
https://my.pcloud.com/publink/show?code=XZswYV7Zi24SStfrHeJsUftzr6lzUHG2smcX

vecto Documentation

The training parameters are as follows: window 2, negative sampling size is set to 5 for SG and 2 for CBOW. Distri-
bution smoothing is set to 0.75. No dynamic context or “dirty” sub-sampling. The number of iterations is set to 2, 5
and 30 for SG, CBOW and GloVe respectively.

SVD vectors:

BNC, 100M words window 2, 500 dims, PMI; SVD C=0.6, 318 Mb, mirror

Russian

Araneum+Wiki+Proza.ru, 6B words window 2, 500 dims, PMI; SVD C=0.6, 2.3 Gb, mirror, paper to
cite

@inproceedings{7396482,
author={A. Drozd and A. Gladkova and S. Matsuoka},
booktitle={2015 IEEE International Conference on Data Science and Data Intensive
→˓Systems},
title={Discovering Aspectual Classes of Russian Verbs in Untagged Large Corpora},
year={2015},
pages={61-68},
doi={10.1109/DSDIS.2015.30},
month={Dec}}

1.5 Training new models

This page describes how to train vectors with the models that are currently implemented in VSMlib.

1.5.1 Word2vec

Word2vec is arguably the most popular word embedding model. We provide implementation of extended word2vec
model, which can be trained on linear and dependency-based contexts, with bound and unbound context representa-
tions.

Additionally we provide an implementation which considers characters rather than words to be the minimal units.
This enables it to take advantage of morphological information: as far as a word-level models such as word2vec is
concerned, “walk” and “walking” are completely unrelated, except through similarities in their distributions.

To train word2vec embeddings vsmlib can be envoked via the command line interface:

>>> python3 -m vsmlib.embeddings.train_word2vec

The command line parameters are as

--dimensions size of embeddings

--context_type context type [linear’ or ‘deps’], for deps context, the annotated corpus is required

--context_representation context representation [‘bound’ or ‘unbound’]

--window window size’)

--model base model type [‘skipgram’ or ‘cbow’]

--negative-size number of negative samples

--out_type output model type [“hsm”: hierarchical softmax, “ns”: negative sampling, “orig-
inal”: no approximation]

--subword specify if subword-level approach should be used [“none”, “rnn”]

12 Chapter 1. Tutorial

https://s3.amazonaws.com/blackbirdprojects/tut_vsm/vectors/explicit_BNC_w2_m10_svd_500_C0.6.tar.gz
https://s3.amazonaws.com/blackbirdprojects/tut_vsm/vectors/explicit_GIGA_Wiki_proza_RUS_w2_m10_svd_500_C0.6.tar.gz
https://www.researchgate.net/profile/Aleksandr_Drozd/publication/282314408_Discovering_Aspectual_Classes_of_Russian_Verbs_in_Untagged_Large_Corpora/links/560b85a408ae576ce6411bfb.pdf
https://www.researchgate.net/profile/Aleksandr_Drozd/publication/282314408_Discovering_Aspectual_Classes_of_Russian_Verbs_in_Untagged_Large_Corpora/links/560b85a408ae576ce6411bfb.pdf
https://arxiv.org/pdf/1301.3781.pdf

vecto Documentation

--batchsize learning minibatch size

--gpu GPU ID (negative value indicates CPU)

--epochs number of epochs to learn

--maxWordLength max word length (only used for char-level subword)

--path_vocab path to the vocabulary

--path_corpus path to the corpus

--path_out path to save embeddings

--test run in test mode

--verbose verbose mode

Alternatively, word2vec training can be done though vsmlib python API.

>>> vsmlib.embeddings.train_word2vec.train(args)

The arguments are argparse.namespace identical to command line arguments. Instance of ModelDense is returned.

Realted papers: original w2v, Bofang, Mnih, subword.

@inproceedings{MikolovChenEtAl_2013_Efficient_estimation_of_word_representations_in_
→˓vector_space,
title = {Efficient Estimation of Word Representations in Vector Space},
urldate = {2015-12-03},
booktitle = {Proceedings of International Conference on Learning Representations
→˓(ICLR)},
author = {Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey},
year = {2013}}

@inproceedings{Li2017InvestigatingDS,
title={Investigating Different Syntactic Context Types and Context Representations
→˓for Learning Word Embeddings},
author={Bofang Li and Tao Liu and Zhe Zhao and Buzhou Tang and Aleksandr Drozd and
→˓Anna Rogers and Xiaoyong Du},
booktitle={EMNLP},
year={2017}}

1.6 Basic operations

1.6.1 Supported VSM formats

At the moment the following data formats are supported:

• .bin format of word2vec (the file has to be called “vectors.bin”)

• .npy arrays with separate vocab files

• .txt plain-text vectors

• sparse vectors in hp5 format

todo fasttext .vec format?

1.6. Basic operations 13

vecto Documentation

1.6.2 Importing vectors

Vecto assumes a one-folder-per-vsm folder structure. All files related to the same vsm - the metadata, vectors, vocab
files, etc. - must all be stored in one directory. If the vector files has the correct extension (.npy, .txt, .bin, .hp5), the
library will attempt to “guess” the correct module to load it with.

>>> import vecto
>>> path_to_vsm = "/path/to/your/model"
>>> my_vsm = vecto.model.load_from_dir(path_to_vsm)

The name of the model is the name directory in which the vector files are stored. For models generated with Vecto,
interpretable folder names with parameters are generated automatically.

>>> print(my_vsm.name)
w2v_comb2_w8_n25_i6_d300_skip_300

You can access the VSM metadata (recorded in metadata.json file located in the same directory as the VSM) as a
Python dictionary:

>>> print(my_vsm.metadata)
{'size_dimensions': 300, 'dimensions': 300, 'size_window': '8'}

1.6.3 Getting top similar neighbors of a word

>>> my_vsm.get_most_similar_words("apple", cnt=5)
[['apple', 1.0000000999898755],
['fruit', 0.61400752577032369],
['banana', 0.58657183882050712],
['plum', 0.5850951585421692],
['apples', 0.58464719369713347]]

This method takes an optional cnt argument specifying how many top similar neighbors to output (the default is 10).
Note that the top similar vector is always the target word itself.

If you need to compute nearest neighbors for many words, this function works faster if the VSM is normalized. If it was
generated with vecto, the normalization will be recorded in metadata, and can be checked with :meth: .normalized()
method. Vecto will automatically check for normalization and use the faster routine if possible. If not, you can first
normalize your model as follows:

>>> my_embeddings.normalize()

Please note that this changes the original embeddings, and to reverse this operation you will have to re-load them.

If you’re going to use the same normalized model several times, you can avoid re-doing the normalization with:

>>> my_embeddings.cache_normalized_copy()

In this case the original embeddings remain unchanged, but the neighbor retrieval will be performed with the cached
normalized version. Please note that this will use additional memory.

.get_most_similar_vectors() enables you to do the same as .get_most_similar_words(), but searching the
top neighbors by the vector representation rather than its label.

Note:

The speed of vector neighborhood computation depends on whether your numpy package has access to
the right linear algebra library - MKL, OpenBLAS or whatever is available for your system. With the

14 Chapter 1. Tutorial

vecto Documentation

OpenBLAS and 4 Ghz Core i7-6700K processor in Ubuntu we’re processing 900 words for 300K 500-
dimensional embeddings in under three minutes.

If you do have the library, but the neighbor extraction is still slow, check if it is actually used by numpy.
This can be done as follows:

>>> import numpy as np
>>> np.show_config()

1.6.4 Words to vectors and back

First, you need to import your model from a directory that holds only that model (.npy, .bin, .hp5 or .txt formats) and
any associated files.

getting the vector representation of a word

>>> my_vsm.get_row("apple")
array([-0.17980662, 0.27027196, -0.33250481, ... -0.22577444], dtype=float32)

You can use the above top-similar function to get the label of the vector most corresponding to your vector in your
VSM vocabulary:

>>> vsm.get_most_similar_vectors(vsm.get_row("apple"))

1.6.5 Filtering the vocabulary of a VSM

In certain cases it may be useful to filter the vocabulary of a pre-trained VSM, e.g. to ensure that two models you are
comparing have the same vocabulary. Vecto provides a .filter_by_vocab() method that returns a new model
instance, the vocabulary of which contains only the words in the provided Python list of words. The list can be empty.

>>> my_vsm.get_most_similar_words("cat", cnt=5)
[['cat', 1.0],
['monkey', 0.95726192],
['dog', 0.95372206],
['koala', 0.94773519],
['puppy', 0.94360757]]

>>> my_new_vsm = my_vsm.filter_by_vocab(["dog", "hotdog", "zoo", "hammer", "cat"])
>>> my_new_vsm.get_most_similar_words("cat", cnt=5)
[['cat', 1.0],
['dog', 0.95372206],
['hotdog', 0.84262532],
['hammer', 0.80627602],
['zoo', 0.7463485]]

1.7 Visualization

When you have the numerical vectors for the units you are interested in, you can use all the goodies of matplotlib to
create any kind of visualizaion you like. The visualize module of Vecto provides a few simple examples to get you
started and/or quickly explore your model as you go.

The visualize module of vecto comes with several functions to quickly explore the representations.

1.7. Visualization 15

vecto Documentation

1.7.1 Drawing features

>>> from vecto import visualize as vz
>>> vs.draw_features(vsm, ["apple", "pear", "cat", "dog"], num_features=20)

TODO: how to interpret this.

1.7.2 Visualizing similarity between certain words.

>>> vs.draw_features_and_similarity(vsm, ["apple", "pear", "cat", "dog"])

The color intensity indicates the degre of similarity. We can see that apple is more similar to pear than to cat or dog,
and the other way round.

1.7.3 Visualizing dimensions

In a dense VSM, each dimension on its own is not likely to be an interpretable semantic feature on its own. Still, it is
the overall pattern of the dimensios that encodes the meaning of any given language unit, and so it may be useful to
visually inspect them.

16 Chapter 1. Tutorial

http%3A%2F%2Fwww.aclweb.org%2Fanthology%2FW16-2507&usg=AOvVaw05u2poEJDhTWcWk19t5HLE

vecto Documentation

>>> vs.std_to_img(vsm.get_row("apple"))

>>> vs.std_to_img(vsm.get_row("cat"))

The rows_to_img function displays only the end points of all dimensions in a given collection of vectors.

>>> vectors = vs.wordlist_to_rows(vsm, ["apple", "pear", "cat", "dog"])
>>> vs.rows_to_img_tips(vectors,max_y=0.8)

1.8 Intrinsic evaluation

1.8.1 Word analogy task

One of the de-facto standard intrinsic evaluations for word embeddings is the word analogy task. The dataset known
as the Google test set became the de-facto standard for evaluating word embeddings, but it is not balanced and sam-
ples only 15 linguistic relations, with 19,544 questions in total. A newer dataset is BATS: it is considerably larger
(98,000 questions) and is balanced: it contains 40 different relations of 4 types (inflections, derivational morphology,
lexicographic and encyclopedic semantics) with 50 unique pairs per relation.

Vecto comes with the script to test 6 different methods of solving word analogies. You can run the script from command
line, indicating the path to the config file as the only argument.

python3 -m vecto.benchmarks.analogy /path/to/config_analogy.yaml

The configuration file is structured as follows:

1.8. Intrinsic evaluation 17

http://www.aclweb.org/anthology/N16-2002

vecto Documentation

path_vectors: [
"/path/to/your/vsm1/"
"/path/to/your/vsm2/"

]

alpha: 0.6
this is the exponent for Sigma values of SVD embeddings

normalize: true
specifies if embeddings should be normalized

method: LRCos
allowed values are 3CosAdd, 3CosAvg, 3CosMul, SimilarToB, SimilalarToAny,
→˓PairDistance, LRCos and LRCosF

exclude: True
specifies if question words should be excluded from possible answers

path_dataset: "/path/to/the/test/dataset"
path to dataset. last segment of the path will be interpreted as dataset name

path_results: "/path/where/to/save/results"
Subfolders for datasets and embeddings willl be created automatically

Vecto also support direct call from run(embeddings, options) function. The options has the same parameters as that
in yaml file. This function returns a dict, which indicate the word analogy results.

For example, the following lines can be used to get word analogy results:

path_model = "./test/data/embeddings/text/plain_no_file_header"
model = vecto.model.load_from_dir(path_model)
options = {}
options["path_dataset"] = "./test/data/benchmarks/analogy/"
options["path_results"] = "/tmp/vecto/analogy"
options["name_method"] = "3CosAdd"
vecto.benchmarks.analogy.analogy.run(model, options)

Dataset

The BATS dataset can be downloaded here. The script expects the input dataset to be a tab-separated file formatted as
follows:

cat cats
apple apples

In many cases there is more than one correct answer; they are separated with slashes:

father dad/daddy
flower blossom/bloom
harbor seaport/haven/harbour

There is a file with a word pairs list for each relation, and these files are grouped into folders by the type of the relation.
You can also make your own test set to use in Vecto, formatted in the same way.

18 Chapter 1. Tutorial

https://my.pcloud.com/publink/show?code=XZOn0J7Z8fzFMt7Tw1mGS6uI1SYfCfTyJQTV

vecto Documentation

Analogy solving methods

Consider the analogy 𝑎:𝑎′ :: 𝑏:𝑏′ (𝑎 is to 𝑎′ as 𝑏 is to 𝑏′). The script implements 6 analogy solving methods:

Pair-based methods:

3CosAdd: 𝑏′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑑∈𝑉 (𝑐𝑜𝑠(𝑏
′, 𝑏− 𝑎+ 𝑎′)), where 𝑐𝑜𝑠(𝑢, 𝑣) = 𝑢·𝑣

||𝑢||·||𝑣||

PairDistance, aka PairDirection: 𝑏′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑑∈𝑉 (𝑐𝑜𝑠(𝑏
′ − 𝑏, 𝑎′ − 𝑎))

3CosMul: 𝑎𝑟𝑔𝑚𝑎𝑥𝑏′∈𝑉
𝑐𝑜𝑠(𝑏′,𝑏)𝑐𝑜𝑠(𝑏′,𝑎′)

𝑐𝑜𝑠(𝑏′,𝑎)+𝜀 𝜀 = 0.001 is used to prevent division by zero)

SimilarToB: returns the vector the most similar to the 𝑏.

SimilarToAny: returns the vector the most similar to any of 𝑎, 𝑎′ and 𝑏 vectors.

Set-based methods: (current state-of-the-art)

3CosAvg: 𝑏′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑏′∈𝑉 (𝑐𝑜𝑠(𝑏
′, 𝑏+ avg_offset)) , where avg_offset =

∑︀𝑚
𝑖=0 𝑎𝑖

𝑚 −
∑︀𝑛

𝑖=0 𝑏𝑖
𝑛

LRCos 𝑏′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑏′∈𝑉 (𝑃 (𝑏′∈𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑙𝑎𝑠𝑠) * 𝑐𝑜𝑠(𝑏′, 𝑏))

LRCosF: a version of LRCos that attempts to only take into account the relevant distributional features.

Caveat: Analogy has been shown to be severely misinterpreted as evaluation task. First of all, all of the above methods
are biased by distance in the distributional space: the closer the target is, the more likely you are to hit it. Therefore
high scores on analogy task indicate basically to what extent the relations encoded by a given VSM match the relations
in the dataset.

Therefore it would be better to not just provide an average score on the whole task, as it is normally done, but to look
at the scores for different relations, as that may show what exactly the model is doing. Since everything cannot be
close to everything, it is to be expected that success in one type of relations would come at the expense of others.

1.8.2 Correlation with human similarity/relatedness judgements

One of the first intrinsic evaluation metrics for distributional meaning representations was correlation with human
judgements to what extent words are related. Roughly speaking, a good VSM should have tiger and zoo closer in the
vector space than tiger and hammer, because tiger and zoo are intuitively more semantically related. There are several
datasets with judgements of relatedness and similarity between pairs of words collected from human subjects. See
(Turney 2006) for the distinction between relatedness and similarity (or relational and attributional similarity).

You can run this type of test in Vecto as follows:

>>> python3 -m vecto.benchmarks.similarity /path/to/config_similarity.yaml

The config_similariy.yaml file is structured as

path_vector: /path/to/your/vsm1/
path_dataset: /path/to/the/test/dataset
normalize: true # specifies if embeddings should be normalized

Similar to word analogy task, Vecto also support direct call from run(embeddings, options) function. The following
lines can be used to get word similarity results:

path_model = "./test/data/embeddings/text/plain_with_file_header"
model = vecto.model.load_from_dir(path_model)
options = {}
options["path_dataset"] = "./test/data/benchmarks/similarity/"
vecto.benchmarks.similarity.similarity.run(model, options)

1.8. Intrinsic evaluation 19

https://www.aclweb.org/anthology/N13-1090
http://www.aclweb.org/anthology/W14-1618
http://www.aclweb.org/anthology/W14-1618
http://tallinzen.net/media/papers/linzen_2016_repeval.pdf
https://www.aclweb.org/anthology/C/C16/C16-1332.pdf
https://www.aclweb.org/anthology/C/C16/C16-1332.pdf
https://www.aclweb.org/anthology/C/C16/C16-1332.pdf
http://www.aclweb.org/anthology/S17-1017
http://www.aclweb.org/anthology/S17-1017
https://dl.acm.org/ft_gateway.cfm?id=1174523&ftid=389424&dwn=1&CFID=827319269&CFTOKEN=87143883

vecto Documentation

The similarity/relatedness score file is assumed to have the following tab-separated format:

tiger cat 7.35
book paper 7.46
computer keyboard 7.62

You can use any of the many available datasets, including:

• WordSim 353 (there is also a version of WordSim353 split into relatedness and similarity subsets)

• MEN

• SimLex

• Rare Words

• Radinsky Mturk data

Please refer to the pages of individual datasets for details on how they were collected and references to them. The
collection of the above datasets in the same format can also be downloaded here.

Caveat: while similarity and relatedness tasks remain one of the most popular methods of evaluating word embed-
dings, they have serious methodological problems. Perhaps the biggest one is the unreliability of middle judgements:
while humans are good at distinguishing clearly related and clearly unrelated word pairs (e.g. cat:tiger vs cat:malt),
there is no clear reason for rating any of the many semantic relations higher than the other (e.g. which is more related
- cat:tiger or cat:whiskers)? It is thus likely that the human similarity scores reflect some psychological measures like
speed of association and prototypicality rather than something purely semantic, and thus a high score on a similarity
task should be interpreted accordingly. This would also explain why a high score on similarity or relatedness does not
necessarily predict good performance on downstream tasks.

1.9 Extrinsic evaluation

The following tasks will soon be available via vecto:

• POS tagging

• Named entity recognition

• Chunking

1.10 Project roadmap

Vecto is work in progress. Everything that works at the moment is described in the present tutorial; feel free to get
in touch if anything is not clear. Also, new functionality is coming in the nearest months, so check back for more
features!

20 Chapter 1. Tutorial

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
https://staff.fnwi.uva.nl/e.bruni/MEN
https://www.cl.cam.ac.uk/~fh295/simlex.html
http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Rare%20Word
https://dl.acm.org/citation.cfm?id=1963455
https://my.pcloud.com/publink/show?code=XZCeL07ZaEJhoLIaDYz8kuC2B6YMuuYlhMyV
http://www.aclweb.org/anthology/W16-2507

vecto Documentation

DONE IN PROGRESS

General:

• Loading various vsm formats: plain text, npy, bi-
nary, h5p

• Metadata generation
• Basic vector operations, efficient similarity search
• VSM visualization

• Pretty data downloader for benchmarks

VSM generation:

• word2vec
• – Character-level VSM

• GloVe
• SVD

VSM evaluation:

• 6 methods of solving word analogies
• similarity and relatedness tests
• text classification
• sequence labeling (POS-tagging, chunking, NER)

• natural language inference
• language modeling
• neural machine translation
• subjectivity classification
• and more!

1.10. Project roadmap 21

vecto Documentation

22 Chapter 1. Tutorial

CHAPTER 2

API reference

vecto is a library for all things related to vector space models in NLP

2.1 Submodules

embeddings
corpus
vocabulary
benchmarks Collection of benchmarks and downstream tasks on em-

beddings

2.1.1 vecto.benchmarks

Collection of benchmarks and downstream tasks on embeddings

analogy

Functions

list_benhcmarks()

23

vecto Documentation

24 Chapter 2. API reference

CHAPTER 3

Contribution Guide

This is a guide for all contributions to vecto. The development of vecto is happening on the official repository at
GitHub.

3.1 Some quick notes:

Please send pull requests to the dev branch.

Pull requests must not lower test coverage score.

If you send a pull request, please make sure your code is pep8-compliant.

If you want to raise an ussue, please first do a quick search to see if it has already been reported. If so, it’s often better
to just leave a comment on an existing issue, rather than creating a new one.

Issues are for bug reports, feature requests etc. For usage-related questions please consult the tutorial; if something is
not covered, raise an issue, and we will update the tutorial.

If there’s an issue you would like to fix - this is very welcome, please get in touch.

25

https://github.com/vecto-ai/vecto
https://github.com/vecto-ai/vecto

vecto Documentation

26 Chapter 3. Contribution Guide

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

vecto Documentation

28 Chapter 4. Indices and tables

Python Module Index

v
vecto, 23
vecto.benchmarks, 23

29

vecto Documentation

30 Python Module Index

Index

A
author, 9

C
cite, 5, 8, 9
cleanup, 5
context, 8

D
date, 5, 8, 9
description, 5, 8, 9
dimensionality, 7
domain, 5, 8

E
encoding, 5
epochs, 8

F
filtering, 7
format, 5

I
id, 5

L
language, 5, 8
lemmatization, 5
lib_version, 7
lowercasing, 5

M
min_frequency, 7
model, 7

N
name, 5, 8, 9

O
Other_preprocessing, 6

P
path, 5
POS_tagging, 5
pre-processing, 5
project_page, 8

S
Semantic_parsing, 5
size, 5, 7, 8
source, 5, 7–9
stemming, 5
syntactic_parsing, 5
system_info, 7

T
task, 8, 9
timestamp, 7
tokenization, 5

V
vecto (module), 23
vecto.benchmarks (module), 23
version, 8, 9
vocabulary, 8

W
window, 7

31

	Tutorial
	API reference
	Contribution Guide
	Indices and tables
	Python Module Index

